书海阁 -数据库系统实现(英文版)
本书资料更新时间:2025-01-19 02:41:22

数据库系统实现(英文版) 下载 pdf 百度网盘 epub 免费 2025 电子书 mobi 在线

数据库系统实现(英文版)精美图片
》数据库系统实现(英文版)电子书籍版权问题 请点击这里查看《

数据库系统实现(英文版)书籍详细信息

  • ISBN:9787111091615
  • 作者:暂无作者
  • 出版社:暂无出版社
  • 出版时间:2002-01
  • 页数:680
  • 价格:31.50
  • 纸张:胶版纸
  • 装帧:平装
  • 开本:暂无开本
  • 语言:未知
  • 丛书:暂无丛书
  • TAG:暂无
  • 豆瓣评分:暂无豆瓣评分
  • 豆瓣短评:点击查看
  • 豆瓣讨论:点击查看
  • 豆瓣目录:点击查看
  • 读书笔记:点击查看
  • 原文摘录:点击查看
  • 更新时间:2025-01-19 02:41:22

内容简介:

暂无相关简介,正在全力查找中!


书籍目录:

1 Introduction to DBMS Implementation

1.1 Introducing: The Megatron 2000 Database System

1.1.1 Megatron 2000 Implementation Details

1.1.2 How Megatron 2000 Executes Queries

1.1.3 What's Wrong With Megatron 2000?

1.2 Overview of a Database Management System

1.2.1 DataDefinition Language Commands

1.2.2 Overview of Query Processing

1.2.3 Main--Memory Buffers and the Buffer Manager

1.2.4 Thansaction Processing

1.2.5 The Query Processor

1.3 Outline of This Book

1.3.1 Prerequisites

1.3.2 Storage-- M anagement Overview

1.3.3 Query-Proce8sing Overview

1.3.4 Thansaction- P rocessing Overview

1.3.5 Information Integration Overview

1.4 Review of Database Models and Languages

1.4.1 Relational Model Review

1.4.2 SQL Review

1.4.3 Re1ational and Object-Oriented Data

1.5 Summary of Chapter 1

1.6 References for Chapter 1

2 Data Storage

2.1 The Memory Hierarchy

2.1.1 Cache

2.1.2 Main Memory

2.1.3 Virtual Memory

2.1.4 Secondary Storage

2.1.5 Tertiary Storage

2.1.6 Volatile and Nonvolatile Storage

2.1.7 Exercises for Section 2.1

2.2 Disks

2.2.1 Mechanics Of Disks

2.2.2 The Disk Controller

2.2.3 Disk Storage Characteristics

2.2.4 Disk Access Characteristics

2.2.5 Writing Blocks

2.2.6 Modifying Blocks

2.2.7 Exercises for Section 2.2

2.3 Using Secondary Storage Effectively

2.3.1 The I/O Model of Computation

2.3.2 Sorting Data in SecondaJry Storage

2.3.3 Merge-Sort

2.3.4 Two-Phase, Multiway Merge--Sort

2.3.5 Extension of Multiway Merging to Larger Relatbos

2.3.6 Exercises for Section 2.3

2.4 Improving the Access Time of Secondary Storage

2.4.1 Organizing Data by Cylinders

2.4.2 Using Multiple Disks

2.4.3 Mirroring Disks

2.4.4 Disk Scheduling and the Elevator Algorithm

2.4.5 Prefetching and Large-Scale Buffering

2.4.6 SummaJry.of Strategies and nadeoffe

2.4.7 Exercises fOr Section 2.4

2.5 Disk Failures

2.5.1 1ntermittent Falures

2.5.2 Checksums

2.5.3 Stable Storage

2.5.4 Error-Handling Capabilities of Stable Storage

2.5.5 Exercises for Section 2.5

2.6 Recovery from Disk Crashes

2.6.1 The Failure Model for Disks

2.6.2 Mirroring as a Redundancy Technique

2.6.3 Paxity Blocks

2.6.4 An Improvment: RAID 5

2.6.5 Coping With Multiple Disk Cfashes

2.6.6 Exercises for Section 2.6

2.7 Summary.of ChaPter 2

2.8 References for ChaPter 2

3 Representing Datu Elements

3.1 Data Elements and Fields

3.1.1 Representing Relational Database Elements

3.1.2 Representing Objects

3.1.3 Representing Data Elements

3.2 Records

3.2.1 Building Fixed-Length Records

3.2.2 Record Headers

3.2.3 Packing Fixed-Length Records into Blocks

3.2.4 Exercises for Section 3.2

3.3 Represention Block and Record Addresses

3.3.1 Client--Server Systems

3.3.2 LogicaJ and Structured Addresses.

3.3.3 Pointer Swizzling

3.3.4 Returning Blocks to Disk

3.3.5 Pinned Records and Blocks

3.3.6 Exercises for Section 3.3

3.4 Variable-Length Data and Records

3.4.1 Records With Variable-Length Fields

3.4.2 Records With Repeating Fields

3.4.3 Variable-Format Records

3.4.4 Records That Do Not Fit in a Block

3.4.5 BLOBS

3.4.6 Exercises for Section 3.4

3.5 Record Modifications

3.5.1 Insertion

3.5.2 Deletion

3.5.3 Update

3.5.4 Exercises for Section 3.5

3.6 Summary of Chapter 3

3.7 References for Chapter 3

4 Index Structure8

4.1 Indexes on Sequential Files

4.1.1 Sequential Files

4.1.2 Dense Indexes

4.1.3 Sparse Indexes

4.1.4 Multiple Levels of Index

4.1.5 Indexes With Duplicate Search Keys

4.1.6 Managing Indexes During Data Modifications

4.1.7 Exercises fOr Section 4.1

4.2 Secondary Indexes

4.2.1 Design of Secondary Indexes

4.2.2 Applications of Secondary Indexes

4.2.3 Indirection in Secondaxy Indexes

4.2.4 Document Retrieval and Inverted Indexes

4.2.5 Exercises fOr Section 4.2

4.3 B-nees

4.3.1 The Structure of B--trees

4.3.2 Applications of B-trees

4.3.3 Lookup in B-Trees

4.3.4 Range Queries

4.3.5 Insertion Into B-nees

4.3.6 Deletion nom B-nees

4.3.7 Efficiency of B-Trees

4.3.8 Exercises fOr Section 4.3

4.4 Hash Tables

4.4.1 Secondary-Storage Hash Tables

4.4.2 Insertion Into a Hash Table

4.4.3 Hash-Table Deletion

4.4.4 Efficiency of Hash Table Indexes

4.4.5 Extensible Hash Tables

4.4.6 Insertion Into Extensible Hash Tables

4.4.7 Linear Hash Tables

4.4.8 Insertion 1nto Linear Hash Tables

4.4.9 Exercises fOr Section 4.4

4.5 Summary Of Chapter 4

4.6 References for Chapter 4

5 Multidimensional Indexes

5.1 Applications Needing Multiple Dimensions

5.1.1 GWaPhic Information System8

5.1.2 Data Cubes

5.1.3 Multidimensional Queries in SQL

5.1.4 Executing Range Queries Using Conventional 1ndexes

5.1.5 Executing Nearest--Neighbor Queries Using ConventionalIndexes

5.1.6 Other Limitations of Conventional Indexes

5.1.7 Overview of Multidimensional Index Strllctures

5.1.8 Exercises for Section 5.1

5.2 Hash-Like Structures for Multidimensional Data

5.2.1 Grid Files

5.2.2 Lookup in a Grid File

5.2.3 Insertion Into Grid Files

5.2.4 Performance Of Grid Files

5.2.5 Patitioned Hash minctions

5.2.6 Comparison of Grid Files and Partitioned Hashing

5.2.7 Exercises for Section 5.2

5.3 Thee-Like Structures fOr Multidimensional Data

5.3.1 Multiple-Key Indexes

5.3.2 Performance of MultiplesKey Indexes

5.3.3 kdnees

5.3.4 Operations on kdnees

5.3.5 AdaPting kdThees to Secondary Storage

5.3.6 Quad Thees

5.3.7 RTrees

5.3.8 Operations on Rtrees

5.3.9 Exercises for Section 5.3

5.4 Bitmap Indexes

5.4.1 Motivation for Bitmap Indexes

5.4.2 Compressed BitmaPS

5.4.3 Operating.on Run-Lengt h- Encoded Bit- Vectors

5.4.4 Managing BitmaP Indexes

5.4.5 Exercises for Section 5.4

5.5 Summary of Chapter 5

5.6 References for Chapter 5

6 Query Execution

6.1 An Algebra for Queries

6.1.1 Union, Intersection, and Difference

6.1.2 The Selection Operator

6.1.3 The Projection Operator

6.1.4 The Product of Relations

6.1.5 Joins

6.1.6 Duplicate Elimination

6.1.7 Grouping and Aggregaion

6.1.8 The Sorting Operator

6.1.9 Expression nees

6.1.10 Exercises for Section 6.1

6.2 Introduction to Physical-Query-Plan Operators

6.2.1 Scanning Tables

6.2.2 Sorting While Scanning Tables

6.2.3 The Model of Computation for Physical Operators

6.2.4 Parameters for Measuring Costs

6.2.5 I/O Cost for Scan Operators

6.2.6 Iterators for Implementation of Physical Operators

6.3 One-Pass Algorithms for Database Operations

6.3.1 One--Pass Algorithms for TUplesat-aTime Operations

6.3.2 One-Pass Algorithms for Unary, FulLRelation Operai

6.3.3 One-Pass Algorithms for Binary Operations

6.3.4 Exercises for Section 6.3

6.4 Nested-Loop Joins

6.4.1 Tuple-Based Nested-Loop Join

6.4.2 An Iterator for Thple--Based Nested--Loop Join

6.4.3 A Block-Based Nested--Loop Join Algorithm

6.4.4 Analysis of Nested-Loop Join

6.4.5 Summary of AlgOrithms so Far

6.4.6 Exercises fOr Section 6.4

6.5 TwcaPass Algorithms Based on Sorting

6.5.1 Duplicate Elimination Using Sorting

6.5.2 Grouping and Aggregation Using Sorting

6.5.3 A Sort-Based Union Algorithm

6.5.4 Sort-Based Algorithms for Intersection and Difference

6.5.5 A Simple Sort--Based Join Algorithm

6.5.6 Analysis of Simple Sort-Join

6.5.7 A More Efficient Sort-Based Join

6.5.8 Summary Of Sort-Based Algorithms

6.5.9 Exercises for Section 6.5

6.6 Two-Pass AlgOrithms Based on Hashing

6.6.1 Partitioning Relations by Hashing

6.6.2 A Hash-Based Algorithm for Duplicate Elimination

6.6.3 A Hash--Based Algorithm for Grouping and Aggrgation

6.6.4 Hash-Based Algorithms for Union, Intersection, and Dif ference

6.6.5 The Hash-Join Algorithm

6.6.6 Saving Some Disk I/O's

6.6.7 Summary of Hash-Based Algorithms

6.6.8 Exercises for Section 6.6

6.7 Index-Based Algorithms

6.7.1 Clustering and Nonclustering Indexes

6.7.2 Index--Based Selection

6.7.3 Joining by Using an Index

6.7.4 Joins Using a Sorted Index

6.7.5 Exercises for Section 6.7

6.8 Buffer Management

6.8.1 Buffer Management Architecture

6.8.2 Buffer Manapement Strategies

6.8.3 The Relationship Between Physical Operator Selection and Buffer Management

6.8.4 Exercises for Section 6.8

6.9 Algorithms Using More Than Two Passes

6.9.1 Multipass Sort-Based Algorithms

6.9.2 Performance of Multipass, Sort--Based Algorithms

6.9.3 Multipass Hash-Based Algorithms

6.9.4 Performance of Multipass Hash-Based Algorithms

6.9.5 Exercises fOr Section 6.9

6.10 PaxaJlel Algorithms fOr Relational Operations.

6.10.1 Models of Paxallelism

6.10.2 Tuple-at-aTime Operations in Parallel

6.10.3 Parallel Algorithms for Full--Relation Operations

6.10.4 Performance of Parallel Algorithms

6.10.5 Exercises for Section 6.10

6.11 SummaJry of Chapter 6

6.12 References for ChaPter 6

7 The Query Compiler

7.1 Parsing

7.1.1 Syntax Analysis and Parse nees

7.1.2 A Grammar for a Simple Subset of SQL

7.1.3 The Preprocessor

7.1.4 Exercises for Section 7.1

7.2 Algebraic Laws for Improving Query Plans

7.2.1 Commutative and Associative Laws

7.2.2 Laws Involving Selection

7.2.3 Pushing Selections

7.2.4 Laws Involving Projection

7.2.5 Laws About Joins and Products

7.2.6 Laws Involving Duplicate Elimination

7.2.7 Laws lnvolving Grouping and Aggregation

7.2.8 Exercises for Section 7.2

7.3 From PaJrse Thees to Logical Query Plans

7.3.1 Conversion to Relational Algebra

7.3.2 Removing Subqueries nom Conditions

7.3.3 Improving the Logical Query Plan

7.3.4 Grouping Associative/Commutat ive O perators

7.3.5 Exercises for Section 7.3

7.4 Estimating the Cost of Operations

7.4.1 Estimating Sizes of Illtermediate ffelations

7.4.2 Estimating the Size of a PrOjectiOn

7.4.3 Estimating the Size of a Selectbo

7.4.4 Estimating the Size of a Join

7.4.5 Natural Joins With Multiple Join Attributes

7.4.6 Joins of Many Relations

7.4.7 Estim8ting Sizes fOr Other Operations

7.4.8 Exercises for Section 7.4

7.5 Introduction to Cost-Based Plan Selection

7.5.1 Obtaining Estimates for Size Parameters

7.5.2 Incremental Computation of Statistics

7.5.3 Heuristics for Reducing the Cost of Logical Query P

7.5.4 Approaches to Enumerating Physical Plans

7.5.5 Exercises for Section 7.5

7.6 Choosing an Order for Joins

7.6.1 Significance of Left and mght Join ArgUments

7.6.2 Join nees

7.6.3 Left-Deep Join nees

7.6.4 Dynarnic Programming to Select a Join Order and Gr

7.6.5 Dynamic Programming With More Detailed Cost fu

7.6.6 A Greedy Algorithm for Selecting a Join Order

7.6.7 Exercises for Section 7.6

7.7 Completing the Physical-Query--Plan Selection

7.7.1 Choosing a Selection Method

7.7.2 Choosing a Join Method

7.7.3 Pipelining Versus Materialization

7.7.4 Pipelining Unary Operations

7.7.5 Pipelining Binary Operations

7.7.6 Notation for Physical Query PlaJns

7.7.7 Ordering Of Physical Operations

7.7.8 Exercises for Section 7.7

7.8 Summary of Chapter 7

7.9 References for ChaPter 7

8 Coping With System Failures

8.1 Issues and Models fOr Resilient Operation

8.1.1 Failure Modes

8.1.2 More About nansactions

8.1.3 Correct Execution of nansactions

8.1.4 The Primitive Operations of Transactions

8.1.5 Exercises for Section 8.1

8.2 Undo Logging

8.2.1 Log Records

8.2.2 The UndthLogging Rules

8.2.3 Recovery Using Undo Logging

8.2.4 Checkpointing

8.2.5 Nonquiescent Checkpointing

8.2.6 Exercises for Section 8.2

8.3 Redo Logging

8.3.1 The Redo--Logging Rule

8.3.2 RetiOvery With Redo Logging

8.3.3 Checkpointing a Redo Log

8.3.4 Recovery With a Checkpointed Redo Log

8.3.5 Exercises for Section 8.3

8.4 Undo/Redo Logging

8.4.1 The Undo/Redo Rules

8.4.2 Recovery With Undo/Redo Logging

8.4.3 Checkpointing aJn Undo/Redo Log

8.4.4 Exercises for Section 8.4

8.5 Protecting Against Media Failures

8.5.1 The Archive

8.5.2 Nonquiescent Archiving

8.5.3 Recovery Using an Archive and Log

8.5.4 Exercises for Section 8.5

8.6 Summaxy of Chapter 8

8.7 References for ChaPter 8

9 Concurrency Control

9.1 Serial and Serializable Schedules

9.1.1 Schedules

9.1.2 Serial Schedules

9.1.3 Serializable Schedules

9.1.4 The Effect of Transaction Semantics

9.1.5 A Notation for nansactions and Schedules

9.1.6 Exercises for Section 9.1

9.2 Conflict - Serializability

9.2.1 Confiicts

9.2.2 Precedence Graphs and a Test for Conflict-Serializability

9.2.3 Why the Precedence--Graph Test Works

9.2.4 Exercises for Section 9.2

9.3 Enforcing Serializability by Locks

9.3.1 Locks

9.3.2 The Locking Scheduler

9.3.3 Two--Phase Locking

9.3.4 Why Two-Phase Locking Works

9.3.5 Exercises for Section 9.3

9.4 Locking Systems With Several Lock Modes

9.4.1 Shared and Exclusive Locks

9.4.2 Compatibility Matrices

9.4.3 Upgrading Locks

9.4.4 Update Locks

9.4.5 Increment Locks

9.4.6 Exercises for Section 9.4

9.5 An Architecture for a Locking Scheduler

9.5.1 A Scheduler That Inserts Lock Actions

9.5.2 The Lock Table

9.5.3 Exercises for Section 9.5

9.6 Managing Hierarchies of DatabaJse Elements

9.6.1 Locks With Multiple Granularity

9.6.2 Warning Locks

9.6.3 Phantoms and Handling Insertions Correctly

9.6.4 Exercises fOr Section 9-6

9.7 The Tree Protocol

9.7.1 Motivation for nee-Based Locking

9.7.2 Rules for Access to Tree-Structured Data

9.7.3 Why the nee Protocol Works

9.7.4 Exercises for Section 9.7

9.8 Concurrency COntrol by TimeStamps

9.8.1 Timestamps

9.8.2 Physically Unrealizable Behaviors

9.8.3 Problems With Dirty Data

9.8.4 The Rules fOr Timestamp-Based Scheduling

9.8.5 Multiversion Timestamps

9.8.6 Timestaznps and Locking

9.8.7 Exercises for Section 9.8

9.9 Concurrency Control by Validation

9.9.1 Architecture of a Validation-Based Scheduler

9.9.2 The Validation Rules

9.9.3 Comparison Of Three Concurrency-Control Mechanisms

9.9.4 Exercises for Section 9.9

9.10 Summary Of ChaPter 9

9.11 References for ChaPter 9

10 More About nansaction Managemeot

10.1 Thansactions that Read Uncommitted Data

10.1.1 The Dirty-Data Problem

10.1.2 Cascading Rollback

10.1.3 Managing Rollbacks

10.1.4 Group Commit

10.1.5 Logical Logging

10.1.6 Exercises for Section 10.1

10.2 View Serializability

10.2.1 View Equivalence

10.2.2 PolygraPhs and the Test for View-Serializability

10.2.3 Testing for View-Serializability

10.2.4 Exercises for Section 10.2

10.3 Resolving Deadlocks

10.3.1 Deedlock Detection by Timeout

10.3.2 The Waits-For GraPh

10.3.3 Deadlock Prevention by Ordering Elements

10.3.4 Detecting Deadlocks by Timestamps

10.3.5 Comparison of Deadloch Management Methods

10.3.6 Exercises for Section 10.3

10.4 Distributed Databases

10.4.1 Distribution of Data

10.4.2 Distributed nansactions

10.4.3 Data Replication

10.4.4 Distributed Query Optimization

10.4.5 Exercises for SeCtion 10.4

10.5 Distributed Commit

10.5.1 Supporting Distributed Atomicity

10.5.2 TwcrPhase Commit

10.5.3 Recovery of Distributed' Thansactions

10.5.4 Exercises for Section 10.5

10.6 Distributed Locking

10.6.1 Centralized Lock Systems

10.6.2 A Cost Model for Distributed Locking Algorithms

10.6.3 Locking Replicated Elements

10.6.4 Primary-CoPy Locking

10.6.5 Global Locks Wom Local Locks

10.6.6 Exercises for Section 10.6

10.7 Long--Duration nansactions

10.7.1 Problems of Long nansactions

10.7.2 sasas

10.7.3 Compensating nansactions

10.7.4 Why Compensating nansactions Work

10.7.5 Exercises for Section 10.7

10.8 Summary of ChaPter 10

10.9 References for ChaPter 10

11 Information Integration

11.1 Modes of Information Illtegration

11.1.1 Problems of Information Integration

11.1.2 Federated Database Systems

11.1.3 Data Waehouses

11.1.4 Mediators

11.1.5 Exercises for Section 11.1

11.2 WraPpers in Mediator-Based Systems

11.2.1 Templates for Query Patterns

11.2.2 WraPper Generators

11.2.3 Filters

11.2.4 Other Operations at the Wrapper

11.2.5 Exercises for Section 11.2

11.3 On--Line AnaJytic Processing

11.3.1 OLAP Applications

11.3.2 A Multidimensional View of OLAP Data

11.3.3 StaJr Schemas

11.3.4 Slicing and Dicing

11.3.5 Exercises for Section 11.3

11.4 Data Cubes

11.4.1 The Cube Operator

11.4.2 Cube Implementation by Materialized Views

11.4.3 The Lattice of Views

11.4.4 Exercises for Section 11.4

11.5 Data Mining

11.5.1 Data-Mining Applications

11.5.2 Association-Rule Mining

11.5.3 The A-Priori Algorithm

11.6 Summary of Chapter 11

11.7 References for Chapter 11

Index


作者介绍:

暂无相关内容,正在全力查找中


出版社信息:

暂无出版社相关信息,正在全力查找中!


书籍摘录:

暂无相关书籍摘录,正在全力查找中!


在线阅读/听书/购买/PDF下载地址:


原文赏析:

超市通过分析收银台数据来了解顾客通常同时购买哪些商品。举例来说,如果数据显示用户同时购买热狗和芥末,那超市经理就可以利用这个信息。


存取(读或写)一个磁盘块需要3步,每一步都有相关的延迟。

1.寻到时间

2.旋转延迟

3.传输时间(transfer time):当磁盘控制器读取或写数据时,数据所在的扇区和扇区间的间隙经过磁头。


加速辅助存储器的访问

1。将要一起访问的块放在同一柱面上

2. 将数据分隔存储在几个小队较小的磁盘上

3. “镜像”磁盘

4. 在OS、DBMS或磁盘控制器中,使用磁盘调度算法选择读写所请求的块的顺序

5. 预取和大规模缓冲


k-Means算法:

1. 从选择k个初始簇开始。这些簇可以是单个点,也可以是小的点集;

2. 将其他未分配的点分配到距离它‘最近’的簇中;

3. [可选],在分配完所有点后,固定每个簇的质心(假定为欧式空间)。然后将所有点重新分配到k个簇中。


其它内容:

暂无其它内容!


书籍真实打分

  • 故事情节:5分

  • 人物塑造:8分

  • 主题深度:7分

  • 文字风格:8分

  • 语言运用:3分

  • 文笔流畅:3分

  • 思想传递:5分

  • 知识深度:3分

  • 知识广度:9分

  • 实用性:5分

  • 章节划分:3分

  • 结构布局:4分

  • 新颖与独特:5分

  • 情感共鸣:5分

  • 引人入胜:3分

  • 现实相关:3分

  • 沉浸感:8分

  • 事实准确性:4分

  • 文化贡献:8分


网站评分

  • 书籍多样性:6分

  • 书籍信息完全性:5分

  • 网站更新速度:8分

  • 使用便利性:6分

  • 书籍清晰度:9分

  • 书籍格式兼容性:4分

  • 是否包含广告:5分

  • 加载速度:5分

  • 安全性:6分

  • 稳定性:7分

  • 搜索功能:6分

  • 下载便捷性:6分


下载点评

  • 博大精深(663+)
  • 书籍完整(374+)
  • 书籍多(136+)
  • 体验还行(126+)
  • 方便(299+)
  • 三星好评(136+)
  • 盗版少(157+)
  • 值得购买(363+)
  • 在线转格式(204+)
  • 无盗版(319+)
  • 五星好评(308+)
  • 无颠倒(631+)

下载评价

  • 网友 相***儿: ( 2025-01-06 05:03:44 )

    你要的这里都能找到哦!!!

  • 网友 隗***杉: ( 2025-01-02 12:42:26 )

    挺好的,还好看!支持!快下载吧!

  • 网友 濮***彤: ( 2025-01-05 16:09:53 )

    好棒啊!图书很全

  • 网友 屠***好: ( 2025-01-16 18:37:27 )

    还行吧。

  • 网友 林***艳: ( 2025-01-09 14:39:01 )

    很好,能找到很多平常找不到的书。

  • 网友 冉***兮: ( 2025-01-17 17:49:24 )

    如果满分一百分,我愿意给你99分,剩下一分怕你骄傲

  • 网友 冯***丽: ( 2024-12-30 03:39:05 )

    卡的不行啊

  • 网友 扈***洁: ( 2025-01-17 21:54:57 )

    还不错啊,挺好

  • 网友 宓***莉: ( 2025-01-02 18:12:53 )

    不仅速度快,而且内容无盗版痕迹。

  • 网友 苍***如: ( 2025-01-15 12:15:28 )

    什么格式都有的呀。

  • 网友 戈***玉: ( 2025-01-10 03:36:01 )

    特别棒


随机推荐